Adamczyk-chauvat K, Delaunay S, Vannier A, François C, Thomas G, Eber F, et al. 2017. Gene Introgression in Weeds Depends on Initial Gene Location in the Crop : Brassica napus – Raphanus raphanistrum Model. Genet. 206: 1361–1372.
Anderson LK, Lohmiller LD, Tang X, Hammond DB, Javernick L, Shearer L. 2014. Combined fluorescent and electron microscopic imaging unveils the specific properties of two classes of meiotic crossovers. Proc. Natl. Acad. Sci. U.S.A. 111: 13415–13420.
Arrieta M, Macaulay M, Colas I, Schreiber M, Shaw PD, Waugh R, et al. 2021. An induced mutation in HvRECQL4 increases the overall recombination and restores fertility in a barley HvMLH3 mutant background. Front. Plant Sci. 12: 706560.
Attri R, Rahman, H. 2018. Introgression of allelic diversity from genetically distinct variants of Brassica rapa into Brassica napus canola and inheritance of the B. rapa alleles. Crop Pasture Sci. 69: 94–106.
Barba-Gonzalez R, Ramanna MS, Visser RGF, Van Tuyl JM. 2005. Intergenomic recombination in F1 lily hybrids (Lilium) and its significance for genetic variation in the BC1 progenies as revealed by GISH and FISH. Genome 48: 884–894.
Blary A, Jenczewski E. 2019. Manipulation of crossover frequency and distribution for plant breeding. Theor. Appl. Genet. 132: 575–592.
Blary A, Gonzalo A, Eber F, Bérard A, Bergès H, Fourment J, et al. 2018. FANCM limits meiotic crossovers in Brassica crops. Front. Plant Sci. 9: 368.
Bohra A, Kilian B, Sivasankar S, Caccamo M, Mccouch SR, Varshney RK. 2021. Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 40: 412–431.
Boideau F, Pele A, Tanguy C, Trotoux G, Maillet L, Gilet M, et al. 2021. A Modified meiotic recombination in Brassica napus largely improves its breeding efficiency. Biol. 10: 771.
Bomblies K, Higgins JD, Yant L. 2015. Meiosis evolves: adaptation to external and internal environments. New Phytol. 208: 306–323.
Bomblies K, Jones G, Franklin C, Zickler D, Kleckner N, Franklin C. 2016. The challenge of evolving stable polyploidy: could an increase in “crossover interference distance” play a central role? Chromosoma 125: 287–300.
Bozdag GO, Ono J, Denton JA, Karakoc E, Hunter N, Leu J, et al. 2021. Breaking a species barrier by enabling hybrid recombination. Curr. Biol. 31(4): R180–R181.
Calderón MC, Rey, M, Martín A, Prieto P. 2018. Homoeologous chromosomes from two Hordeum species can recognize and associate during meiosis in wheat in the presence of the Ph1 Locus. Front. Plant Sci. 9: 585.
Canady MA, Ji Y, Chetelat RT. 2006. Homeologous recombination in Solanum lycopersicoides introgression lines of cultivated tomato. Genet. 174: 1775–1788.
Carlos DP, Ramirez-Parra E. 2015. Whole genome duplications in plants : an overview from Arabidopsis. J. Exp. Bot. 66(22): 6991–7003.
Chambers SR, Hunter N, Louis EJ, Borts RH. 1996. The mismatch repair system reduces meiotic homeologous recombination and stimulates recombination-dependent chromosome loss. Mol. Cell. Biol. 16: 6110–6120.
Chan AW, Villwock SS, Williams AL, Jannink J. 2022. Sexual dimorphism and the effect of wild introgressions on recombination in cassava (Manihot esculenta Crantz) breeding germplasm. G3-Genes Genome Genet. 12: jkab372.
Chen NWG, Thareau V, Ribeiro T, Magdelenat G, Ashfield T, Innes RW, et al. 2018. Common bean subtelomeres are hot spots of recombination and favor resistance gene evolution. Front. Plant Sci. 9: 1185.
Chen S, Nelson MN, Chèvre AM, Jenczewski E, Li Z, Mason AS, et al. 2011. Trigenomic bridges for Brassica improvement. Crit. Rev. Plant Sci. 30: 524–547.
Chester M, Gallagher JP, Symonds VV, Veruska A, Mavrodiev EV, Leitch AR, et al. 2011. Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proc. Natl. Acad. Sci. U.S.A. 109: 1176–1181.
Chetelat RT, Meglic V, Cisneros P. 2000. A genetic map of tomato based on BC1 Lycopersicon esculentum × Solanum lycopersicoides reveals overall synteny but suppressed recombination between these homeologous genomes. Genet. 154: 857–867.
Choi K, Zhao X, Tock AJ, Lambing C, Underwood CJ, Hardcastle TJ, et al. 2018. Nucleosomes and DNA methylation shape meiotic DSB frequency in Arabidopsis thaliana transposons and gene regulatory regions. Genome Res. 28: 532–546.
Chu Y, Bertioli D, Levinson CM, Stalker HT, Holbrook CC, Ozias-Akins P. 2021. Homoeologous recombination is recurrent in the nascent synthetic allotetraploid Arachis ipae. G3-Genes Genomes Genet. 11(4): jkab066.
Copenhaver G, Knoll A, Girard C. 2012. FANCM limits meiotic crossovers related papers. Science 336: 1588–1590.
Copete-parada A, Palomino C, Cabrera A. 2021. Development and characterization of Wheat- Agropyron cristatum Introgression lines induced by gametocidal genes. Agron. 11: 277.
Coulton A, Burridge AJ, Edwards KJ. 2020. Examining the effects of temperature on recombination in wheat. Front. Plant Sci. 11: 230.
Danilova TV, Zhang G, Liu, W, Friebe B. 2016. Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to wheat. Theor. Appl. Genet. 130: 549-556
de Maagd RA, Loonen A, Chouaref J, Pele A, Meijer-Dekens F, Fransz P, et al. 2020. CRISPR/Cas inactivation of RECQ4 increases homeologous crossovers in an interspecific tomato hybrid. Plant Biotechnol. J. 18: 805–813.
Delame M, Prado E, Blanc S, Robert G, Christophe S, Mestre P, et al. 2019. Introgression reshapes recombination distribution in grapevine interspecific hybrids. Theor. Appl. Genet. 132: 1073–1087.
Delourme R, Foisset N, Horvais R, Barret P, Champagne G, Cheung WY, et al. 1998. Characterisation of the radish introgression carrying the Rfo restorer gene for the Ogu -INRA cytoplasmic male sterility in rapeseed (Brassica napus L.). Theor. Appl. Genet. 97: 129–134.
Ding M, Chen ZJ. 2018. Epigenetic perspectives on the evolution and domestication of polyploid plant and crops. Curr. Opin. Plant Biol. 42: 37–48.
Dreissig S, Mascher M, Heckmann S. 2019. Variation in recombination rate is shaped by domestication and environmental conditions in barley. Mol. Biol. Evol. 36: 2029–2039.
Dreissig S, Maurer A, Pillen K, Sharma R, Milne L, Flavell AJ. 2020. Natural variation in meiotic recombination rate shapes introgression patterns in intraspecific hybrids between wild and domesticated barley. New Phytol. 228: 1852–1863.
Dvorak J, Deal KR, Luo MC. 2006. Discovery and mapping of wheat Ph1 suppressors. Genet. 174: 17–27.
Dvorak J. 1987. Chromosomal distribution of genes in diploid Elytriga elongata that promote or suppress pairing of wheat homoeologous chromosomes. Genome 29: 34–40.
Fan C, Hao M, Jia Z, Neri C, Chen X, Chen W, et al. 2021. Some characteristics of crossing over in induced recom-bination between chromosomes of wheat and rye. Plant J. 105: 1665–1676.
Fayos I, Mieulet D, Petit J, Meunier AC, Nicolas A, Guiderdoni E. 2019. Engineering meiotic recombination pathways in rice. Plant Biotechol. J. 17: 2062–2077.
Ferdous M, Higgins JD, Osman K, Lambing C, Roitinger E, Franklin FCH, et al. 2012. Inter-homolog crossing-over and synapsis in Arabidopsis meiosis are dependent on the chromosome axis protein AtASY3. PLoS Genet. 8: e1002507.
Fernandes BJ, Séguéla-arnaud M, Larchevêque C, Lloyd AH. 2018. Unleashing meiotic crossovers in hybrid plants. Proc. Natl. Acad. Sci. U.S.A. 115(10): 2431–2436.
Fuentes RR, de Ridder D, van Dijk ADJ, Peters SA. 2022. Domestication shapes recombination patterns in tomato. Mol. Biol. Evol. 39: msab287.
Girard C, Crismani W, Froger N, Mazel J, Lemhemdi A, Horlow C, et al. 2014. FANCM-associated proteins MHF1 and MHF2, but not the other Fanconi anemia factors, limit meiotic crossovers. Nucleic Acids Res. 42: 9087–9095.
Haenel Q, Laurentino TG, Roseti M, Berner D. 2018. Meta‐analysis of chromosome‐scale crossover rate variation in eukaryotes and its significnace to evolutionary genomics. Mol. Ecol. 27: 2477-24–97.
Hao M, Luo J, Yang M, Zhang L, Yan Z, Yuan Z. 2011. Comparison of homoeologous chromosome pairing between hybrids of wheat genotypes Chinese Spring ph1b and Kaixian-luohanmai with rye. Genome 54: 959–964.
Harper J, Gasior D, Mathews R, Thomas A, Evans C, King J, et al. 2018. An investigation of genotype-phenotype association in a festulolium forage grass population containing genome-spanning Festuca pratensis chromosome segments in a Lolium perenne background. PLoS ONE 13(11): e0207412.
Henderson IR, Bomblies K. 2021. Evolution and plasticity of genome-wide meiotic recombination rates. Annu. Rev. Genet. 55: 23–43.
Higgins EE, Howell EC, Armstrong SJ, Parkin IAP. 2021. A major quantitative trait locus on chromosome A9, BnaPh1, controls homoeologous recombination in Brassica napus. New Phytol. 229: 3281–3293.
Hurgobin B, Golicz AA, Bayer PE, Chan CK, Tirnaz S, Dolatabadian A, et al. 2018. Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. Plant Biotechnol. J. 16: 1265–1274.
Jeridi M, Bakry F, Escoute J, Fondi E, Jeridi M, Ferchichi A. 2011. Homoeologous chromosome pairing between the A and B genomes of Musa spp. revealed by genomic in situ hybridization. Ann. Bot. 108: 975–981.
Jiang CX, Chee PW, Draye X, Morrell PL, Smith CW, Paterson AH. 2000. Multilocus interactions restrict gene introgression in interspecific populations of polyploid Gossypium (Cotton). Evol. 54(3): 798–814.
Kianian PMA, Wang M, Simons K, Ghavami F, He Y, Dukowic-schulze S, et al. 2018. High-resolution crossover mapping reveals similarities and differences of male and female recombination in maize. Nat. Commun. 9: 2370.
King J, Armstead IP, Donnison SI, Roberts LA, Harper JA, Skøt K, et al. 2007. Comparative analyses between Lolium/Festuca introgression lines and rice reveal the major fraction of functionally annotated gene models is located in recombination-poor/very recombination-poor regions of the genome. Genet. 177: 597–606.
King J, Grewal S, Yang C, Hubbart S, Scholefield D, Ashling S, et al. 2017. A step change in the transfer of interspecific variation into wheat from Amblyopyrum muticum. Plant Biotechol. J. 15: 217–226.
Koo D, Friebe B, Gill BS. 2020. Homoeologous recombi-nation: a novel and effi cient system for broadening the genetic variability in wheat. Agron. 10: 1059.
Kopecký D, Havránková M, Loureiro J, Bartoš J, Kopecká J, Doleže J. 2010. Physical distribution of homoeologous recombination in individual chromosomes of Festuca pratensis in Lolium multiflorum. Cytogenet. Genome Res. 129: 162–172.
Kumlay AM, Baenziger PS, Gill KS, Shelton DR, Graybosch RA, Lukaszewski AJ, et al. 2003. Understanding the effect of rye chromatin in bread wheat. Crop Sci. 43: 1643–1651.
Kuo P, Da ines O, Lambing C. 2021. Rewiring meiosis for crop improvement. Front. Plant Sci. 12: 708948.
Leal-Bertioli SCM, Godoy IJ, Santos JF, Doyle JJ, Guimarães PM, Abernathy BL, et al. 2018. Segmental allopolyploidy in action increasing diversity through polyploid hybridi-zation and homoeologous recombination. Am. J. Bot. 105(6): 1053–1066.
Leflon M, Grandont L, Eber F, Huteau V, Coriton O, Chelysheva L, et al. 2010. Crossovers get a boost in brassica allotriploid and allotetraploid hybrids. Plant Cell 22: 2253–2264.
Li A, Geng S, Zhang L, Liu D, Mao L. 2015. Making the bread: insights from newly synthesized allohexaploid wheat. Mol. Plant. 8: 847–859.
Li F, Jin C, Zhang L, Wang J. 2021. Hyper-recombinant plants: an emerging field for plant breeding. Crit. Rev. Plant Sci. 40: 446–458.
Li H, Deal KR, Luo MC, Ji W, Distelfeld A, Dvorak J. (2017). Introgression of the Aegilops speltoides Su1-Ph1 Suppressor into Wheat. Front. Plant Sci. 8: 1–13.
Li X, Yu M, Bolanos-Villegas P, Zhang J, Ni D, Ma H, et al. 2021. Fanconi anemia ortholog FANCM regulates meiotic crossover distribution in plants. Plant Physiol. 186: 344–360.
Liu C, Cao Y, Hua Y, Du G, Liu Q, Wei X, et al. 2021. Concurrent disruption of genetic interference and increase of genetic recombination frequency in hybrid. Front. Plant Sci. 12: 757152.
Marburger S, Monnahan P, Seear PJ, Martin SH, Koch J, Paajanen P, et al. 2020. Interspecific introgression mediates adaptation to whole genome duplication. Nat. Commun. 2019: 1–11.
Mason AS, Nelson MN, Castello M, Yan G, Cowling WA. 2011. Genotypic effects on the frequency of homoeologous and homologous recombination in Brassica napus × B. carinata hybrids. Theor. Appl. Genet. 122: 543–553.
Melamed-bessudo C, Levy AA. 2012. Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 109(16), E981–E988.
Mieulet D, Aubert G, Bres C, Klein A, Droc G, Vieille E, et al. 2018. Unleashing meiotic crossovers in crops. Nat. Plants. 4: 1010–1016.
Miller DE, Hawley RS. 2017. Dispatches meiotic recombi-nation : taking the path less traveled. Curr. Biol. 27(1): R26–R28.
Modliszewski JL, Wang H, Albright AR, Lewis SM, Bennett AR, Huang J, et al. 2018. Elevated temperature increases meiotic crossover frequency via the interfering (Type I) pathway in Arabidopsis thaliana. PLoS Genet. 14: e1007384.
Nicolas SD, Le Mignon G, Eber F, Coriton O, Monod H, Clouet V, et al. 2007. Homeologous Recombination Plays a Major Role in Chromosome Rearrangements That Occur During Meiosis of Brassica napus Haploids. Genet. 175: 487–503.
Nyarko CA, Mason AS. 2021. Genetics chromosome pairing: sequence similarity or genetic control ? Trends Genet. 38: 419–421.
Otto, SP, Lenormand T. 2002. Resolving the paradox of sex and recombination. Nat. Rev. Genet. 3: 252–261.
Ozkan H, Feldman M. 2001. Genotypic variation in tetraploid wheat affecting homoeologous pairing in hybrids with Aegilops peregrina. Genome 44, 1000–1006.
Pecinka A, Fang W, Rehmsmeier, M, Levy AA, Scheid OM. (2011). Polyploidization increases meiotic recombination frequency in Arabidopsis. BMC Biol. 9: 24.
Pele A, Falque M, Trotoux G, Jousseaume T, Dechaumet S, Gilet M, et al. 2017. Amplifying recombination genome-wide and reshaping crossover landscapes in Brassicas. PLoS Genet. 13: e1006794.
Prakash S, Chopra VL. (2021). Reconstruction of allopolyploid Brassicas through non- homologous recombination : introgression of resistance to pod shatter in Brassica napus. Genet. Res. 56: 1–2.
Raz A, Dahan-meir T, Melamed-bessudo C, Leshkowitz D, Levy AA. (2021). Redistribution of Meiotic Crossovers Along Wheat Chromosomes by Virus-induced gene silencing. Front. Plant Sci. 11: 635139.
Rehman F, Gong H, Bao Y, Zeng S, Huang H, Wang Y, et al. 2022. CRISPR gene editing of major domestication traits accelerating breeding for Solanaceae crops improvement. Plant Mol. Biol. 108: 157–173.
Rey M, Ram C, Mart AC. 2021. Wheat, rye, and barley genomes can associate during meiosis in newly synthesized trigeneric hybrids. Plants 10, 113.
Rey MD, Calderón MC, Prieto P, Lanteri S, Vega JM. 2015. The use of the ph1b mutant to induce recombination between the chromosomes of wheat and barley. Front. Plant Sci. 6: 1–9.
Rey María-dolores, Martín, AC, Smedley, M, Hayta S, Harwood W, Shaw P, et al. 2018. Magnesium Increases homoeologous crossover frequency during meiosis in ZIP4 (Ph1 Gene) Mutant wheat-wild relative hybrids. Front. Plant Sci. 9: 1–12.
Rodgers-melnick E, Bradbury PJ, Elshire RJ, Glaubitz JC, Acharya CB. 2015. Recombination in diverse maize is stable, predictable, and associated with genetic load. Proc. Natl. Acad. Sci. U.S.A. 112: 3823–3828.
Rönspies M, Dorn A, Schindele P, Puchta H. 2021. CRISPR–Cas-mediated chromosome engineering for crop impro-vement and synthetic biology. Nat. Plants. 7: 566–573.
Saito TT, Colaiácovo MP. 2017. Regulation of crossover frequency and distribution during meiotic recombination. Cold Spring Harb. Symp. Quant. Biol. 82: 223–234.
Schmickl R, Yant L. 2021. Adaptive introgression: how polyploidy reshapes gene flow landscapes. New Phytol. 230: 457–461.
Scholz M, Pendinen G. 2017. The Effect of homoeologous meiotic pairing in tetraploid Hordeum bulbosum L. × H. vulgare L. hybrids on alien introgressions in offspring. Cytogenet. Genome Res. 150: 139–149.
Serra H, Lambing C, Griffin CH, Topp SD, Nageswaran DC. 2018. Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis. Proc. Natl. Acad. Sci. U.S.A. 115(10): 2–7.
Serra H, Svacina R, Baumann U, Whitford R, Sutton T, Bartoš J, et al. 2021. Ph2 encodes the mismatch repair protein MSH7-3D that inhibits wheat homoeologous recombination. Nat. Commun. 12: 41467.
Sheikh I, Sharma P, Verma SK, Kumar S. 2016. Characterization of interspecific hybrids of Triticum aestivum × Aegilops sp. without 5B chromosome for induced homoeologous pairing. J. Plant Biochem. Biotechnol. 117: 117–120.
Shi R, Jin J, Nifong JM, Shew D, Lewis RS. 2022. Homoeologous chromosome exchange explains the creation of a QTL affecting soil-borne pathogen resistance in tobacco. Plant Biotechnol. J. 20: 47–58.
Soares NR, Mollinari M, Oliveira GK, Pereira GS, Lucia M, Vieira C. 2021. Meiosis in polyploids and implications for genetic mapping: a review. Genes 12: 1517.
Speranza P, Gaiero P, Mazzella C, Vilaro F, Jong HD. 2017. Pairing analysis and in situ Hybridisation reveal autopolyploid-like behaviour in Solanum commersonii × S. tuberosum (potato) interspecific hybrids. Euphytica 213: 137.
Stein A, Coriton O, Rousseau-gueutin M, Samans B, Schiessl SV, Obermeier C, et al. 2017. Mapping of homoeologous chromosome exchanges influencing quantitative trait variation in Brassica napus. Plant Biotechnol. J. 15: 1478–1489.
Storme ND, Geelen D, Meeus S, Vallejo-marı M. 2020. Effect of Whole-Genome Duplication on the Evolutionary Rescue of Sterile Hybrid Monkeyflowers. Plant Commun. 1: 100093.
Strelnikova SR, Krinitsina AA, Komakhin RA. 2021. Effective RNAi-mediated silencing of the mismatch repair msh2 gene induces sterility of tomato plants but not an increase in meiotic recombination. Genes 12: 1167.
Suay L, Zhang D, Lod M, Huteau V, Coriton O, Szadkowski E, et al. 2014. Crossover rate between homologous chromosomes and interference are regulated by the addition of specific unpaired chromosomes in Brassica. New Phytol. 201: 645–656.
Svacina R, Sourdille P, Kopecky D, Bartos J. 2020. Chromo-some pairing in polyploid grasses. Front. Plant Sci. 11: 1056.
Tam SM, Hays JB, Chetelat RT. 2011. Effects of suppressing the DNA mismatch repair system on homeologous recombination in tomato. Theor. Appl. Genet. 123: 1445–1458.
Tennessen JA, Govindarajulu R, Ashman TL, Liston A. 2014. Evolutionary origins and dynamics of octoploid strawberry linkage maps. Genome Biol. Evol. 6(12): 3295–3313.
Tiley GP, Burleigh JG. 2015. The relationship of recombi-nation rate, genome structure, and patterns of molecular evolution across angiosperms. BMC Evol. Biol. 15: 194.
Underwood CJ, Choi K, Lambing C, Zhao X, Serra H. 2017. Epigenetic activation of meiotic recombination near Arabidopsis thaliana centromeres via loss of H3K9me2 and non-CG DNA methylation. Genome Res. 28(4): 519-531.
Verma SK, Kumar S, Sheikh I, Sharma P. 2016. Induced homoeologous pairing for transfer of useful variability for high grain Fe and Zn from Aegilops kotschyi into wheat. Plant Mol. Biol. Rep. 34: 1083–1094.
Wan H, Li J, Ma S, Yang F, Chai L, Liu Z, et al. 2021. Allopolyploidization increases genetic recombination in the ancestral diploid D genome during wheat evolution. Crop J. 10(3): 743-753.
Wang L, Cao S, Chen ZJ. 2021. Altered chromatin architecture and gene expression during polyploidization and domestication of soybean. Plant Cell 33(5), 1430-1446.
Wang OM, Dong ZY, Zhang ZJ, Lin XY, Shen Y, Zhou D, et al. 2005. Extensive de novo genomic variation in rice induced by introgression. Genetics 170: 1945–1956.
Wang Y, van Rengs WM, Waznul M, Mohd A, Underwood CJ. 2021. Meiosis in crops: from genes to genomes. J. Exp. Bot. 72(18): 6091–6109.
Wang Y, Copenhaver GP. 2018. Meiotic Recombination: mixing it up in plants. Annu. Rev. Plant Biol. 69: 1-33.
Wu Y, Lin F, Zhou Y, Wang J, Sun S, Wang B, et al. 2021. Genomic mosaicism due to homoeologous exchange generates extensive phenotypic diversity in nascent allopolyploids. Natl. Sci. Rev. 8: nwaa277.
Xiong Z, Gaeta RT, Pires JC. 2011. Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc. Natl. Acad. Sci. U.S.A. 108: 7908–7913.
Xu C, Huang Q, Id, Ge X, Li Z. 2019. Phenotypic, cytogenetic, and molecular marker analysis of Brassica napus intro-gressants derived from an intergeneric hybridization with Orychophragmus. PLoS ONE 14: 1–16.
Xu J, Wang L, Deal KR, Zhu T, Ramasamy RK, Cheng M, et al. 2020. Genome ‑ wide introgression from a bread wheat × Lophopyrum elongatum amphiploid into wheat. Theor. Appl. Genet. 133: 1227–1241.
Yang Z, Ge X, Yang Z, Qin W, Sun G, Wang Z, et al. 2019. Extensive intraspecific gene order and gene structural variations in upland cotton cultivars. Nat. Commun. 10: 2989.
Yelina NE, Lambing C, Hardcastle TJ, Zhao X, Santos B, Henderson IR. 2015. DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis. Genes Dev. 29: 2183–2202.
Yin L, Zhu Z, Luo X, Huang L, Li Y, Mason AS, et al. 2020. Genome-wide duplication of allotetraploid brassica napus produces novel characteristics and extensive ploidy variation in self-pollinated progeny. G3-Genes Genome Genet. 10: 3687–3699.
Yu X, Wang X, Hyldgaard B, Zhu Z, Zhou R, Kjær KH, et al. 2018. Allopolyploidization in Cucumis contributes to delayed leaf maturation with repression of redundant homoeologous genes. Plant J. 94: 393–404.
Zhang R, Hou F, Feng Y, Zhang W, Zhang M, Chen P. 2015. Characterization of a Triticum aestivum – Dasypyrum villosum T2VS - 2DL translocation line expressing a longer spike and more kernels traits. Theor. Appl. Genet. 128: 2415–2425.
Zhang Z, Fu T, Liu Z, Wang X, Xun H, Li G, et al. 2019. Extensive changes in gene expression and alternative splicing due to homoeologous exchange in rice segmental allopolyploids. Theor. Appl. Genet. 132: 2295–2308.
Zhang Z, Gou X, Xun H, Bian Y, Ma X, Li J, et al. 2020. Homoeologous exchanges occur through intragenic recom-bination generating novel transcripts and proteins in wheat and other polyploids. Proc. Natl. Acad. Sci. U.S.A. 117: 14561–14571.
Zhao M, Ku J, Liu B, Yang D, Yin L, Ferrell TJ, et al. 2021. The mop1 mutation affects the recombination landscape in maize. Proc. Natl. Acad. Sci. U.S.A. 118(7): 1–8.
Zou J, Fu D, Gong H, Qian W, Xia W, Pires JC, et al. 2011. De novo genetic variation associated with retrotransposon activation, genomic rearrangements and trait variation in a recombinant inbred line population of Brassica napus derived from interspecific hybridization with Brassica rapa. Plant J. 68: 212–224.