Squash (
The genetic purity assessment of F1 hybrid seed is essential for successful adoption of hybrid seed technology (Nandakumar
Seven F1 hybrid breeding lines (SQ001, SQ002, SQ003, SQ004, SQ005, SQ006, and SQ007) and seven commercial F1 cultivars (PMR Teunteunae, DN-A, DN-B, Nongwooae, Jinhanae, Parangsae, and Doksuri) of squash were collec-ted from Republic of Korea were used for validation of the newly developed SNP type assays in this study (Table 1). A total of 751 individuals of the parangsae cultivars were used for F1 hybrid seed purity testing.
Table 1 . List of F1 hybrid breeding lines and commer-cial F1 cultivars of squash used in this study.
No. | Cultivars |
---|---|
1 | SQ001 |
2 | SQ002 |
3 | SQ003 |
4 | SQ004 |
5 | SQ005 |
6 | SQ006 |
7 | SQ007 |
8 | PMR Teunteunae |
9 | DN-A |
10 | DN-B |
11 | Nongwooae |
12 | Jinhanae |
13 | Parangsae |
14 | Doksuri |
The genomic DNA was extracted from the young leaves of each squash commercial F1 hybrid cultivars and F1 hybrid breeding lines using the ‘DNeasy Plant Mini Kit’ (Qiagen, Wilmington, USA) according to the manufacturer’s instructions. A Nanodrop spectrophotometer was used to determine the concentration and purity of the extracted DNA samples (Thermo Scientific, Wilmington, USA) and then diluted to a concentration of 20 ng/mL with nuclease- free water.
The SNP information of was collected from ‘Cucurbit Genomics Database (CuGenDB)’ available at http:// cucurbitgenomics.org. For genotyping, seven F1 hybrid breeding lines and seven commercial F1 cultivars were used for hybrid seed purity testing (Table 1). The Fluidigm SNP assay sets used in this study were synthesized by Macrogen, Korea (Table 2). The Fluidigm assay was performed using the platform ‘Fluidigm EP1 genotyping’ (Fluidigm, USA) according to the manufacturer’s protocol. The SNPs were then called using the ‘Fludigidm EP1 Genotyping’ analysis software (version 4.8.1).
Table 2 . List of SNPs used in ‘Fluidigm SNP Genotyping’ assays.
SNP Marker Name | Chromosome | Location (bp) | SNP [Ref/Alt] | SNP (color of dye)a) |
---|---|---|---|---|
CMo-A01 | 1 | 3,318,442 | …CAA[A/G]CCA… | A(F):G(H) |
CMo-A02 | 1 | 9,837,040 | …TCT[G/A]AGG… | G(F):A(H) |
CMo-A03 | 2 | 8,873,265 | …CTC[A/G]GCA… | A(F):G(H) |
CMo-A04 | 2 | 10,378,972 | …GAG[G/A]ATT… | G(F):A(H) |
CMo-A05 | 3 | 5,724,100 | …AGC[G/C]CCG… | G(F):C(H) |
CMo-A06 | 3 | 6,119,169 | …AGG[T/C]TTA… | T(F):C(H) |
CMo-A07 | 4 | 8,389,880 | …CTC[G/A]ATT… | G(F):A(H) |
CMo-A08 | 4 | 20,447,172 | …TCC[C/T]TCA… | C(F):T(H) |
CMo-A09 | 6 | 3,712,655 | …TTG[G/A]GTC… | G(F):A(H) |
CMo-A10 | 6 | 11,115,368 | …TTC[C/T]CTC… | C(F):T(H) |
CMo-A11 | 8 | 2,798,704 | …AGG[T/G]TAA… | T(F):G(H) |
CMo-A12 | 8 | 6,252,977 | …AAA[C/A]AAA… | C(F):A(H) |
CMo-A13 | 10 | 6,646,259 | …GCT[C/T]GAT… | C(F):T(H) |
CMo-A14 | 11 | 4,451,324 | …GCC[G/A]AAC… | G(F):A(H) |
CMo-A15 | 13 | 8,296,803 | …GAA[C/T]GCG… | C(F):T(H) |
CMo-A16 | 15 | 1,475,799 | …TGT[G/C]CAA… | G(F):C(H) |
CMo-A17 | 15 | 9,704,446 | …GGG[T/C]GTA… | T(F):C(H) |
CMo-A18 | 16 | 1,782,015 | …TAT[G/A]TAG… | G(F):A(H) |
CMo-A19 | 16 | 3,290,808 | …TTG[G/T]TGC… | G(F):T(H) |
CMo-A20 | 16 | 8,018,335 | …GGG[G/T]AAA… | G(F):T(H) |
CMo-A21 | 17 | 2,812,397 | …GAC[G/A]GTC… | G(F):A(H) |
CMo-A22 | 17 | 10,502,431 | …TCC[C/T]GTA… | C(F):T(H) |
CMo-A23 | 18 | 1,876,608 | …CAG[G/A]TCT… | G(F):A(H) |
CMo-A24 | 18 | 3,666,538 | …TTT[C/G]ATG… | C(F):G(H) |
CMo-A25 | 18 | 10,701,307 | …TCT[C/G]ACT… | C(F):G(H) |
CMo-A26 | 20 | 3,466,354 | …TGC[C/A]AGA… | C(F):A(H) |
CMo-A27 | 20 | 4,075,437 | …CTA[G/A]GCT… | G(F):A(H) |
a)F: FAM dye, H: HEX dye.
SNPs were detected using high resolution melting (HRM) analysis combined with a 3’-blocked and unlabeled oligonucleotide probe (HybProbe) specific to the SNP site. The HRM primers used in this study were ordered from Macrogen (Table 3). After that, using a LightCycler 96 instrument, the gDNA was used for HRM analysis (Roche, Mannheim, Germany) according to the manufacturer’s instructions. HRM was carried out in 10 mL reaction mixtures containing 1 mL at 5ng/mL DNA, 0.1 mL of forward primer (10 pmol), 0.5 mL of reverse primer (10 pmol), 0.5 mL of probe (10 pmol), 0.3 mL of SYTO9 fluorescent dye (Invitrogen, USA), 5 mL of HS prime LP premix (GENETBIO, Korea), and 2.6 mL of DDW. HRM conditions were include three steps, first step is pre- incubation (300 seconds initial pre-incubation at 95℃), second step is 40 cycle of 3 step amplification (95℃ for 10 seconds, 64℃ to 56℃ for 15 seconds under touchdown and 72℃ for 15 seconds), and the last step is HRM reading (last step is four readings per ℃ at the final step after 60 seconds at 95℃, 60 seconds at 40℃, and 1 at 97℃). HRM data was analyzed using LightCycler 96 software (version 1.1) with a 0.2 positive/negative threshold level and 100 percent discrimination for delta Tm and curve shape.
Table 3 . List of primer and probe sequences used in HRM assay of SNPs.
HRM Marker | Primer (5’-3’) | ||
---|---|---|---|
Forward | Reverse | Probea) | |
CMo-A01P | AGTCTTCAGTGCCAACGGTGATTC | ATGGGTTTTGGAGGAGATTCTTATC | AGATTGGCAGGCAAACCATGAGCAT |
CMo-A02P | ATTGCCAAAATGCCATTAAGTAAGC | GTTGTAGTTTTAGCTGCTGCTCTCA | CTGCAAATCTTACCTCTGAGGTGTTT |
CMo-A03P | ATTATAGAACATGATATGCTGCCCAC | TCCCTTACGCTATCACTTGTTTGTTAA | ACATTCACAAATCTCAGCATCATCC |
CMo-A04P | GTCCACCAACCCATTATGCTTTGAA | AAGAGGCAATAGTGGAAGAACTTG | AGCAAGGTGGAGAGGATTGTTTCCA |
CMo-A05P | TGAGCAGCTCTTCAACCTCTTCGAA | TGCTGCAGTTTCAAATTGGGTTTCA | AGGAATGTACCAGCAGCGCCGAGA |
CMo-A06P | AGCAGCAATGTTGGCAGTGGCAAA | TTCCCATGTTGACCTCAATGTCCT | AAGGCACCAATGCCTAAACCTCGCA |
CMo-A07P | GATGAAGTTTCTTCAAGAACTAGTCC | GACATAGTTAATGATTTCGTCTAGCA | TCACATCAATTCGCTCGATTAAAGTT |
CMo-A08P | TTGAAGTCCATGCAGCCCTTGTT | CTGTTCTTCAGCCTCAATGTGGAT | AGACCATTTCTCTCCCTCAATCACT |
CMo-A09P | TGAAACTGTGTAAACTGGCTGCTCT | CATGTTGGATTTAAGAAATGGAAGAAG | TTCAAGAGGAATTGGGTCTGAAGAA |
CMo-A10P | CAATTGGAGAAAGGGTTTCGCG | AGCAGCAGCGGAATGAAGTTGA | TTGAAGAACTCGATTCCCTCGAGAG |
CMo-A11P | CTTATATGTGCATGGAGAAACGGC | CATGAGAGAAATGATGAAAGGACAG | TCCCTAAAACCTTAACCTCTTTCAG |
CMo-A12P | GCGGTTGTTACTCATATAATGAGAAG | GAGCATCTGCAGCAAGTTCTCTC | TGTTTTCCCTTTGTTTGGGGTTGTT |
CMo-A13P | GAGGTTGCACATCGGCTAGGT | CTGCAGCAAGACCTATAGGATTTGA | GAGAAGAGGCTTGATCCACAAAGTT |
CMo-A14P | ATGTCAAATAAATCTGTCTCGACGC | TGGAATGGATAATCTAGAGCTACAG | TCTGGAAATGCCGAACTTTTGATACT |
CMo-A15P | CGGCATTGTCGAGAGATATCGA | ATCGTGAAGAACTCCATAATGGCT | ACCGATAAGCTTCGCATTCCTGTTG |
CMo-A16P | TGTACTTTCATGGAAGCTGGCGTT | TGACGGTTCGGAGGTTGGAGA | TACGGAAGATGTGCAAAGACGCCAT |
CMo-A17P | GTGATATAATTCCAGTAATTTGCAGC | TTGCCCATTCTATTGCAGCTATAG | TTCATCCTACGCCCATCGGTTCAT |
CMo-A18P | TCTTGATCTCTTCCATTCTGGATC | GATGAAGCAAGCGAAATTGCTACA | TCTACGTCTTATATAGATTCTGACACG |
CMo-A19P | GCAGCTATCTAAGAAGGCTAAATATC | ATGATTCGAAGAAACTGCCGAATTAGT | TCCTTCTTTGGTTGGTGCAATGTGC |
CMo-A20P | CCGAAACTCAACGTCAAATAATGTG | ACGGAGAGCGAAGGGCTAAATTT | TCAAGTCTTTTCCCCACCATCCAAT |
CMo-A21P | TGATTGCGAAATAGTCTTTCGTTGC | TCTTGTTCAGCGTTCGAGTATCGA | GACTCGACGACGGTCACGATGA |
CMo-A22P | TGCTTATCAGAGTGGCATTTATTCTG | GAGCTTAGTAAGAATGGTGATTAGAAC | AGACATACCGTCCTGTACAGTAAGA |
CMo-A23P | GAAGCTTACAAACGGGTATGCAGA | ATATGTAGTGTTCTTGATAGTGTTAAT | GTGACAAAGACGCTGCCATTGTCTT |
CMo-A24P | CTCACTTAAGAGGATCCAGGGTG | TGCCTTGAACACCAATGTTGCCTT | CATGACAGCATGAAAAGCATTCTCTG |
CMo-A25P | TACGAGTCGCATTTCTTGACCG | ACGAAGTTAGCACAGTAATAGTCATC | TTAGGTCATTTCTGACTTTGATGCTAG |
CMo-A26P | CTGTCAACTGTTTGAATACTCGGG | GTACCTAACAGTTGAAGAATCTCCA | TGGACCAGAAATGCAAGAAATGGAG |
CMo-A27P | CATGTGAGCTGCTGTGGACGATT | ACAAGCGAAAGACTTCATAGCAGATAT | AGGAATAGATCTAAGCTGAATGGCT |
a)Bold indicates SNP.
We analyzed a total of 192 primer sets for the ‘Fuidigm SNP type’ assays and 29 of which had successful DNA amplification (Fig. 1, Table 2). The red, green, and blue dots represent XX (fluorescence of only the FAM dye), XY (both FAM and HEX dyes), YY (only HEX dye), respec-tively. The SNP markers and their chromosomal position of 27 successful SNPs are presented in Table 2. The primers and probe sequences of each SNP marker are present in Table 3. The marker type of each SNP type assay was divided into homozygote reference SNP (XX), homo-zygote alternative SNP (YY) and heterozygotes (XY) (Fig. 1 and Table 4). Twenty-nine SNP markers were further checked by the high resolution melting (HRM) analysis (Fig. 2) and 27 SNP markers can distinguish three different types (Table 4), including homozygote reference SNP (XX), homozygote alternative SNP (YY) and heterozygotes (XY). Eight SNP markers (CMo-A01, CMo-A02, CMo- A04, CMo-A05, CMo-A12, CMo-A16, CMo-A20 and CMo-A25) accurately distinguished hetero-zygotes (XY) from the registered commercial F1 hybrid squash cultivars while partially heterozygotes (XY) and partially homozy-gotes (XX and YY) from the analyzed squash breeding lines (Table 4). Three SNP markers (CMo-A06, CMo-A11 and CMo-A13) were distinguished all the registered com-mercial F1 hybrid squash cultivars either as homozygote reference allele (XX) or homozygote alternate allele (YY) but partially heterozygotes (XY) and partially homozygote reference allele (XX) from the squash breeding lines. However, CMo-A08 successfully identified most of the registered commercial F1 cultivars as heterozygotes (XY) except ‘Doksuri’ and CMo-A24 iden-tified the heterozygotes except ‘Doksuri’ and ‘PMR Teun-teunae’.
Table 4 . Validation of ‘Fluidigm SNP Genotyping’ assay developed for the purity test.
Assay | SQ001 | SQ002 | SQ003 | SQ004 | SQ005 | SQ006 | SQ007 | PMR Teun-teunae | DN-A | DN-B | Nong-wooae | Jin-hanae | Parang-sae | Dok-suri |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CMO-A01 | YY | YY | XY | XY | XY | YY | YY | XY | XY | XY | XY | XY | XY | XY |
CMO-A02 | YY | YY | XY | XY | XY | YY | XY | XY | XY | XY | XY | XY | XY | XY |
CMO-A03 | YY | YY | XY | YY | YY | YY | XY | YY | XY | XY | XY | XY | XY | XY |
CMO-A04 | XY | YY | XY | XY | XY | YY | XX | XY | XY | XY | XY | XY | XY | XY |
CMO-A05 | XX | XY | XY | XY | XY | XY | XY | XY | XY | XY | XY | XY | XY | XY |
CMO-A06 | XX | XY | XY | XY | XX | XY | XY | XX | XX | XX | XX | XX | XX | XX |
CMO-A07 | XX | XX | XX | XX | XX | XX | XX | XX | XX | XX | XX | XX | YY | XY |
CMO-A08 | YY | YY | XY | XY | XY | YY | XY | XY | XY | XY | XY | XY | XY | XX |
CMO-A09 | XX | XX | XY | XY | XY | XX | XY | XX | XY | XY | XY | XY | XY | XY |
CMO-A10 | XY | XX | XX | XX | XX | XX | XX | XX | XY | XY | XY | XY | XY | XY |
CMO-A11 | YY | YY | XY | YY | YY | YY | XY | YY | YY | YY | YY | YY | YY | YY |
CMO-A12 | XX | XX | XY | XY | XY | XX | XY | XY | XY | XY | XY | XY | XY | XY |
CMO-A13 | XX | XX | XY | XX | XX | XX | XY | XX | XX | XX | XX | XX | XX | XX |
CMO-A14 | XX | XX | XX | XY | XX | XX | XY | XX | XY | XY | XY | XY | XY | XY |
CMO-A15 | XY | YY | YY | XY | YY | YY | XY | XY | XY | XY | XY | XY | YY | YY |
CMO-A16 | XY | XX | XX | XY | XY | XX | XY | XY | XY | XY | XY | XY | XY | XY |
CMO-A17 | XY | YY | XY | XY | XY | YY | XX | XY | XY | XY | XY | XY | XX | XX |
CMO-A18 | XY | YY | YY | XY | XY | YY | XY | XY | XY | XY | XY | XY | XX | XX |
CMO-A19 | YY | YY | YY | YY | YY | YY | YY | YY | XY | XY | XY | XY | YY | YY |
CMO-A20 | XY | YY | YY | YY | XY | YY | XY | XY | XY | XY | XY | XY | XY | XY |
CMO-A21 | YY | YY | XY | XY | XY | YY | XY | XY | XY | XY | XY | XY | XY | XX |
CMO-A22 | XY | XX | XY | XY | XY | XX | YY | XY | XY | XY | XY | XY | XY | XX |
CMO-A23 | XY | XY | YY | YY | YY | YY | XX | YY | XY | XY | XY | XY | XY | YY |
CMO-A24 | XY | XY | XX | XX | XX | XX | XY | XX | XY | XY | XY | XY | XY | XX |
CMO-A25 | XY | XX | XX | XY | XY | XX | XY | XY | XY | XY | XY | XY | XY | XY |
CMO-A26 | XX | XX | XY | XX | XX | XX | XY | XX | XX | XX | XX | XX | XX | XY |
CMO-A27 | YY | YY | XY | YY | YY | YY | XY | YY | XY | XY | XY | XY | XY | XY |
Further, the genetic purity of the registered commercial F1 hybrid cultivar was determined by HRM analysis using CMo-A03 SNP marker (Fig. 3). Four lots of individuals from the registered commercial F1 hybrid cultivar ‘Paransae’ were used to determine genetic purity (Table 5). The HRM analysis results revealed that LOT1 (186 heterozygotes out of 186 individuals), LOT3 (187 heterozygotes out of 187 individuals) and LOT4 (189 heterozygotes out of 189 individuals) showed 100% purity whereas LOT2 (182 heterozygotes out of 189 individuals) had 96.3% purity (Table 5).
Table 5 . Results of purity test in ‘Parangsae’ cultivars.
Cultivar | Lots | No. of indivi-duals | SNP marker | Heterozygote (F1) | Purity (%) |
---|---|---|---|---|---|
Parangsae | LOT1 | 186 | CMo-A03 | 186 | 100 |
LOT2 | 189 | CMo-A03 | 182 | 96.3 | |
LOT3 | 187 | CMo-A03 | 187 | 100 | |
LOT4 | 189 | CMo-A03 | 189 | 100 |
The genetically pure seed crop cultivar is the key criteria for commercial cultivars including F1 hybrids. We aimed to develop SNP marker set for rapid and high-throughput genotyping system to identify and genetic purity analysis of squash cultivars based on ‘Fluidigm SNP Genotyping’ assay. The ‘Fluidigm SNP Genotyping’ assay is a cost- effective platform for distinguishing commercial crop cul-tivars (Park
In this study, we analyzed seven registered commercial F1 hybrid cultivars and seven squash breeding lines using 27 SNP markers based on ‘Fluidigm SNP Genotyping’ assay to evaluate the genetic purity (Table 1 and 5). The results showed that all the tested SNP markers had successful DNA amplification in both the eight registered commercial F1 hybrid cultivars and the seven breeding lines of squash (Fig. 1 and Table 3). Moreover, all of those markers were analyzed using HRM analysis and all were amplified (Fig. 2). Similar results on HRM-based SNP markers for genetic purity analysis of cultivars/species were reported in melon and
All our experiments complied with local and national regulations.
The authors declare that they have no competing interests.
This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Digital Breeding Transformation Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (Project number 322071-03) and Sunchon National University Research Fund in 2020 (Grant no. 2020-0192).
I.-S.N. conceived the study. J.-G.P. and J.-E.H. con-ducted the experiments and analyzed the data. M.A.R. wrote and revised the final version of the manuscript. All authors read the final version and approved the manuscript.
Download Form