Ali, A, Bang, SW, Yang, EM, Chung, SM, and Staub, JE (2014a). Putative paternal factors controlling chilling tolerance in Korean market-type cucumber (Cucumis sativus L.). Scientia Horticulturae. 167, 145-148.
Ali, A, Yang, EM, Bang, SW, Chung, SM, and Staub, JE (2014b). Assessment of chilling injury and molecular marker analysis in cucumber cultivars (Cucumis sativus L.). Kor J Hort Sci Technol. 32, 227-234.
Arabidopsis Genome Initiative (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 408, 796-815.
Baker, SS, Wilhelm, KS, and Thomashow, MF (1994). The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol. 24, 701-713.
Bravo, LA, Gallardo, J, Navarrete, A, Olave, N, Martínez, J, and Alberdi, M (2003). Cryoprotective activity of a cold induced dehydrin purified from barley. Physiol Plant. 118, 262-269.
Brini, F, Hanin, M, Lumbreras, V, Amara, I, Khoudi, H, and Hassairi, A (2007). Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep. 26, 2017-2026.
Cavagnaro, PF, Senalik, DA, Yang, L, Simon, PW, Harkins, TT, and Kodira, CD (2010). Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics. 11, 569.
Celik Altunoglu, Y, Baloglu, MC, Baloglu, P, Yer, EN, and Kara, S (2017). Genome-wide identification and comparative expression analysis of LEA genes in watermelon and melon genomes. Physiol. Mol. Biol. Plants. 23, 5-21.
Celik Altunoglu, Y, Baloglu, P, Yer, EN, Pekol, S, and Baloglu, MC (2016). Identification and expression analysis of LEA gene family members in cucumber genome. Plant Growth Regul. 80, 225-241.
Chow, CN, Zheng, HQ, Wu, NY, Chien, CH, Huang, HD, and Lee, TY (2016). PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Res. 44, D1154-D1160.
Close, TJ (1996). Dehydrins:emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant. 97, 795-803.
Danyluk, J, Houde, M, Rassart, É, and Sarhan, F (1994). Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerance gramineae species. FEBS Lett. 344, 20-24.
Danyluk, J, Perron, A, Houde, M, Limin, A, Fowler, B, and Benhamou, N (1998). Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell. 10, 623-638.
Garcia-Mas, J, Benjak, A, Sanseverino, W, Bourgeois, M, Mir, G, and González, VM (2012). The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA. 109, 11872-11877.
Graether, SP, and Boddington, KF (2014). Disorder and function: a review of the dehydrin protein family. Front Plant Sci. 5, 576.
Guo, S, Zhang, J, Sun, H, Salse, J, Lucas, WJ, and Zhang, H (2013). The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet. 45, 51-58.
Hanin, M, Brini, F, Ebel, C, Toda, Y, Takeda, S, and Masmoudi, K (2011). Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signal Behav. 6, 1503-1509.
Hara, M (2010). The multifunctionality of dehydrins: An overview. Plant Signal Behav. 5, 503-508.
Hara, M, Terashima, S, Fukaya, T, and Kuboi, T (2003). Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta. 217, 290-298.
Houde, M, Dallaire, S, N’Dong, D, and Sarhan, F (2004). Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnol J. 2, 381-387.
Huang, S, Li, R, Zhang, Z, Li, L, Gu, X, and Fan, W (2009). The genome of the cucumber, Cucumis sativus L. Nat Genet. 41, 1275-1281.
Hundertmark, M, and Hincha, DK (2008). LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics. 9, 118.
Jiang, C, Iu, B, and Singh, J (1996). Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol. 30, 679-684.
Jones, P, Binns, D, Chang, HY, Fraser, M, Li, W, and McAnulla, C (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics. 30, 1236-1240.
Kim, HA, Shin, AY, Lee, MS, Lee, HJ, Lee, HR, and Ahn, J (2016). De novo transcriptome analysis of Cucumis melo L. var. makuwa. Mol. Cells. 39, 141-148.
Kumar, M, Lee, SC, Kim, JY, Kim, SJ, Aye, SS, and Kim, SR (2014). Over-expression of dehydrin gene, OsDhn1, improves drought and salt stress tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). J Plant Biol. 57, 383-393.
Kumar, S, Stecher, G, and Tamura, K (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 33, 1870-1874.
Kusano, T, Aguan, K, Abe, M, and Sugawara, K (1992). Nucleotide sequence of a rice rab16 homologue gene. Plant Mol Biol. 18, 127-129.
Lee, SC, Kim, SH, and Kim, SR (2013). Drought inducible OsDhn1 promoter is activated by OsDREB1A and OsDREB1D. J Plant Biol. 56, 115-121.
Lee, SC, Lee, MY, Kim, SJ, Jun, SH, An, G, and Kim, SR (2005). Characterization of a stress-inducible dehydrin gene, OsDhn1, from rice (Oryza sativa L.). Mol. Cells. 19, 212-218.
Li, Z, Zhang, Z, Yan, P, Huang, S, Fei, Z, and Lin, K (2011). RNA-Seq improves annotation of protein-coding genes in the cucumber genome. BMC Genomics. 12, 540.
Lu, A, and Jeffrey, C (2011). Cucurbitaceae (). Flora of China, Wu, ZY, Raven, PH, and Hong, DY, ed. St. Louis: Science Press, Beijing, and Missouri Botanical Garden Press
Nylander, M, Svensson, J, Palva, ET, and Welin, BV (2001). Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol. 45, 263-279.
Ouyang, S, Zhu, W, Hamilton, J, Lin, H, Campbell, M, and Childs, K (2007). The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res. 35, D883-D887.
Perdiguero, P, Collada, C, and Soto, A (2014). Novel dehydrins lacking complete K-segments in Pinaceae. The exception rather than the rule. Front Plant Sci. 5, 682.
Qi, J, Liu, X, Shen, D, Miao, H, Xie, B, and Li, X (2013). A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet. 45, 1510-1515.
Rorat, T (2006). Plant dehydrins: tissue location, structure and function. Cell Mol Biol Lett. 11, 536-556.
Rural Development administration (RDA) (2013). Cucumber cultivation-Agricultural technique guide 107. Korea: RDA
Saeed, AI, Sharov, V, White, J, Li, J, Liang, W, and Bhagabati, N (2003). TM4: a free, open-source system for microarray data management and analysis. Biotechniques. 34, 374-378.
Seki, M, Narusaka, M, Abe, H, Kasuga, M, Yamaguchi-Shinozaki, K, and Carninci, P (2001). Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell. 13, 61-72.
Thomashow, MF, Gilmour, SJ, Stockinger, EJ, Jaglo-Ottosen, KR, and Zarka, DG (2001). Role of the Arabidopsis CBF transcriptional activators in cold acclimation. Physiol Plant. 112, 171-175.
Urasaki, N, Takagi, H, Natsume, S, Uemura, A, Taniai, N, and Miyagi, N (2016). Draft genome sequence of bitter gourd (Momordica charantia), a vegetable and medicinal plant in tropical and subtropical regions. DNA Res. 24, 51-58.
Verma, G, Dhar, YV, Srivastava, D, Kidwai, M, Chauhan, PS, and Bag, SK (2017). Genome-wide analysis of rice dehydrin gene family: Its evolutionary conservedness and expression pattern in response to PEG induced dehydration stress. PLoS ONE. 12, e0176399.
Welin, BV, Olson, A, and Palva, ET (1995). Structure and organization of two closely related low-temperature-induced dhn/lea/rab- like genes in Arabidopsis thaliana L. Heynh Plant Mol Biol. 29, 391-395.
Wóycicki, R, Witkowicz, J, Gawroński, P, Dąbrowska, J, Lomsadze, A, and Pawełkowicz, M (2011). The genome sequence of the North-European cucumber (Cucumis sativus L.) unravels evolutionary adaptation mechanisms in plants. PLoS ONE. 6, e22728.
Wu, S, Shamimuzzaman, M, Sun, H, Salse, J, Sui, X, and Wilder, A (2017). The bottle gourd genome provides insights into Cucurbitaceae evolution and facilitates mapping of a Papaya ringspot virus resistance locus. Plant J.
Xing, X, Liu, Y, Kong, X, Liu, Y, and Li, D (2011). Overexpression of a maize dehydrin gene, ZmDHN2b, in tobacco enhances tolerance to low temperature. Plant Growth Regul. 65, 109-118.
Yamaguchi-Shinozaki, K, and Shinozaki, K (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell. 6, 251-264.
Yamaguchi-Shinozaki, K, and Shinozaki, K (2005). Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci. 10, 88-94.
Yin, Z, Rorat, T, Szabala, BM, Ziółkowska, A, and Malepszy, S (2006). Expression of a Solanum sogarandinum SK3-type dehydrin enhances cold tolerance in transgenic cucumber seedlings. Plant Sci. 170, 1164-1172.
Zolotarov, Y, and Strömvik, M (2015). De novo regulatory motif discovery identifies significant motifs in promoters of five classes of plant dehydrin genes. PLoS ONE. 10, e0129016.